Rabu, 04 April 2012

Teori Hukum Hardy-Weinberg

Hukum Hardy-Weinberg memberikan standar ideal untuk para ahli genetika untuk melakukan suatu perbandingan populasi yang sebenarnya dan mendeteksi perubahan evolusi.

Dua hal utama dalam hukum Hardy-Weinberg, yaitu :

(1) Jika tidak ada gangguan maka frekuensi alel yang berbeda dalam populasi akan cenderung tetap/tidak berubah sepanjang waktu.

(2) Dengan tidak adanya faktor pengganggu, maka frekuensi genotipe juga tidak akan berubah setelah generasi I.



Syarat berlakunya asas Hardy-Weinberg:
Setiap gen mempunyai viabilitas dan fertilitas yang sama
Perkawinan terjadi secara acak
Tidak terjadi mutasi gen atau frekuensi terjadinya mutasi, sama besar.
Tidak terjadi migrasi
Jumlah individu dari suatu populasi selalu besar



Jika lima syarat yang diajukan dalam kesetimbangan Hardy Weinberg tadi banyak dilanggar, jelas akan terjadi evolusi pada populasi tersebut, yang akan menyebabkan perubahan perbandingan alel dalam populasi tersebut. Definisi evolusi sekarang dapat dikatakan sebagai: ”Perubahan dari generasi ke generasi dalam hal frekuensi alel atau genotipe populasi”. Dalam perubahan dalam kumpulan gen ini (yang merupakan skala terkecil), spesifik dikenal sebagai mikroevolusi. Akan dibahas 5 penyebab mikroevolusi



1. Genetic Drift (Hanyutan Genetik)

Bayangkan anda melempar uang 10x dan mendapatkan hasil 3 angka,7 gambar. Anda masih bisa menerimanya. Jika anda melempar 100.000x dan mendapatkan 30.000x gambar, anda akan curiga dengan mata uang tersebut. Semakin kecil ukuran sampel, semakin besar peluangnya untuk terjadi penyimpangan dari hasil ideal yang diharapkan. Misalkan, ada populasi bunga liar yang anggaplah konstan terdiri dari 10 tumbuhan dengan AA=5, Aa=3, aa=1. Pada generasi pertama, hanya 5 yang bereproduksi (1AA, 3Aa, dan 1aa). Selanjutnya, akan terjadi 10 tumbuhan dengan AA=3, Aa=4, aa=3. Jika selenjutnya hanya 3 tumbuhan yang menghasilkan keturunan (2AA dan 1Aa), pastilah alel a semakin tereduksi dalam populasi tersebut. Inilah satu contoh mikroevolusi. Lainnya adalah Efek Leher Botol (Bottleneck Effect), yakni faktor non seleksi alam (misalkan bencana alam) yang memilih korban benar-korban secara acak). Contoh klasik dari efek leher botol adalah habisnya variasi genetik anjing laut gajah utara yang nyaris punah pada 1890 ketika jumlahnya hanya 20 ekor. Ketika diuji pada 1970-an, 30.000 anjing laut gajah utara tidak memiliki variasi genetik sama sekali yang dimungkinkan akibat pergeseran genetik. Perbandingan, variasi genetik melimpah pada anjing laut gajah selatan yang hidup tentram.

2. Gene Flow (Aliran Genetik)

Gene Flow yaitu suatu pelanggaran syarat Kesetimbangan Hardy-Weinberg yang mengatakan bahwa populasi harus terisolasi dari populasi lain. Misalkan ada dua populasi bunga liar. Jika serbuk sari aa dari populasi pertama tertiup ke populasi kedua, frekuensi alel aa akan meningkat terus pada populasi kedua.

3. Mutasi

Meskipun mutasi dalam lokus gen tertentu jarang terjadi, dampak kumulatifnya dapat berakibat nyata. Hal ini disebabkan karena tiap individu punya ribuan gen dan banyak populasi memiliki jutaan individu. Tentunya dalam jangka panjang, mutasi sangat penting bagi evolusi karena posisinya sebagai sumber asli variasi genetik yang merupakan seleksi alam.

4. Perkawinan Tak Acak

Perkawinan tak acak adalah pelanggaran syarat kesetimbangan Hardy-Weinberg yang mengharapkan perkawinan acak. Nyatanya, individu akan lebih sering kawin dengan tetangganya (bahkan kawin dengan dirinya sendiri/selfing yang amat umum pada tumbuhan). Hal ini akan mengurangi jumlah heterozygote dan meningkatkan jumlah homozygote dominan dan resesif. Pun ada jenis perkawinan berdasar pilihan (assortative mating), yakni individu (biasanya betina) cenderung memilih jantan dengan ciri-ciri khusus. Bisa ditebak, ini menyebabkan pergeseran dalam perbandingan alel tertentu.



5. Seleksi Alam

Intinya adalah keberhasilan yang berbeda dalam reproduksi. Seleksi alam menyebabkan perbandingan alel yang diturunkan ke generasi berikutnya menjadi berubah dibandingkan perbandingan alel di populasi awal. Di antara semua faktor mikroevolusi yang kita bahas, hanya seleksi alam yang mampu menyesuaikan populasi dengan lingkungannya. Seleksi alam mengakumulasi dan mempertahankan genotipe yang menguntungkan dalam populasi. Jika lingkungan berubah, seleksi alam akan “merespons” dengan mempertahankan genotipe yang cocok dengan lingkungan yang baru. Akan tetapi, derajat adaptasi hanya dapat diperluas dalam ruang lingkup keanekaragaman genetik populasi tersebut.

Hukum ini dapat dilihat misalnya pada populasi siput yang dapat melakukan fertilisasi sendiri secara acak (langkah 1). Siput-siput ini memiliki sebagian gen-gen dominan untuk warna cangkang, misalnya biru, kuning, atau hijau. Dengan menganalisis perubahan frekuensi dari gen warna ini dengan persamaan Hardy-Weinberg maka kita akan dapat menentukan apakah populasi siput tersebut berkembang.

Masing-masing dari ke 5 siput tersebut bersifat diploid dengan 2 kopi gen pengendali warna. Satu alel dari gen (A) menyebabkan warna biru, 1 alel (a) menyebabkan warna kuning dan heterozigot (Aa) menyebabkan warna hijau. Pada unggun gen populasi ini ada 10 alel: 6 alel A dan untuk alel a. Jika simbol q menggambarkan peluang dari alel a, maka q = 4/10 atau 0,4. Karena jumlah alel A ditambah dengan alel a menggambarkan semua jumlah alel pada gen dalam populasi siput, maka 0,6 + 0,4 = 1 atau p + q = 1. Ini adalah persamaan unggun gen.


Faktor yang merubah Frekuensi Gen
1.     Mutasi Gen
Walaupun mutasi pada DNA adalah acak, seleksi alam bukanlah proses acak yang bergantung pada kebetulan. Lingkungan menentukan probabilitas keberhasilan reproduksi. Hasil akhir seleksi alam adalah organisme yang dapat beradaptasi terhadap lingkungan. Seleksi alam tidak mempunyai tujuan akhir, dan evolusi tidak seperlunya membuat organisme menjadi lebih kompleks, lebih cerdas, ataupun lebih canggih. Sebagai contoh, kutu merupakan keturunan dari serangga ordo mecoptera yang bersayap, dan ular adalah kadal tidak lagi memerlukan kaki, walaupun fiton masih mempunyai struktur kecil kaki yang tersisa dari nenek moyangnya. Organisme yang ada di dunia hanyalah merapakan varian makhluk hidup yang berhasil beradaptasi terhadap lingkungan.
Perubahan lingkungan yang cepat biasanya akan menyebabkan kepunahan. Dari kesemuaan spesies yang pernah ada di Bumi, 99,9 persennya telah punah. Sejak dimulainya kehidupan di Bumi, terdapat lima kepunahan massal besar-besaran yang telah mengakibatkan penurunan keberagaman spesies secara besar dan tiba-tiba. Kepunahan massal yang paling akhir, kejadian kepunahan Kapur–Tersier, terjadi 65 juta tahun yang lalu. Ia mendapatkan perhatian yang lebih besar daripada kejadian kepunahan lainnya karena telah menyebabkan kepunahan dinosaurus.
Mutasi adalah perubahan yang terjadi pada bahan genetik (DNA maupun RNA), baik pada taraf urutan gen (disebut mutasi titik) maupun pada taraf kromosom. Mutasi pada tingkat kromosomal biasanya disebut aberasi. Mutasi pada gen dapat mengarah pada munculnya alel baru dan menjadi dasar bagi kalangan pendukung evolusi mengenai munculnya variasi-variasi baru pada spesies.